## Linear Algebra, Winter 2022

## List 7

More complex numbers, intro to polynomials

164. Re-write  $(r e^{i\theta})^3$  in the form  $\underline{\phantom{a}} e^{\underline{\phantom{a}} i}$ .

 $e^{\theta i} = \cos(\theta) + i\sin(\theta)$ 

165. Re-write  $10e^{(\pi/4)i}$  in the form \_\_\_\_\_+ \_\_\_\_*i*.

166. Re-write  $(2e^{7i})^{10}$  in the form \_\_\_\_\_+ \_\_\_\_i.

167. Re-write  $-\sqrt{5} + \sqrt{15}i$  in the form  $\_e^{-i}$ .

168. If z is a complex number with |z| = 4, what is  $|z^2|$ ?

169. If z is a complex number with  $\arg(z) = 5\pi/6$ , what is  $\arg(z^2)$ ?

170. If w is a complex number with  $\arg(w) = \pi/10$ , what is  $\arg(w^{446})$ ?

171. Write 
$$\left(\frac{\sqrt{3}-i}{1+i}\right)^6$$
 in the form  $a+bi$ .  
(Hint:  $\sqrt{3}-i=2e^{(-\pi/6)i}$  and  $1+i=\sqrt{2}e^{(\pi/4)i}$ .)

**Rectangular form:** a + bi, or a + ib, or bi + a, or similar. **Polar form:**  $r(\cos \theta + i \sin \theta)$ , or  $r \cos(\theta) + r \sin(\theta)i$ , or similar. Requires  $r \ge 0$ . **Exponential form:**  $r e^{\theta i}$ , or  $r e^{i\theta}$ .



173. For z = 1 + i and  $w = 3e^{(\pi/4)i}$ , calculate the following. For complex values, you may give the answer in rectangular or polar or exponential form (your choice).

| (a) | w   | (e) | $(ar w)^2$ | (i) | z/w |
|-----|-----|-----|------------|-----|-----|
| (b) | zw  | (f) | zw         | (j) | w/z |
| (c) | z/w | (g) | z + w      |     |     |
| (d) | -w  | (h) | $z + z^2$  |     |     |
|     |     |     |            |     |     |





175. Which of the points A-E above could be zw?

176. Write  $(5e^{70^{\circ}i})(2e^{-40^{\circ}i})$  in exponential form and polar form and rectangular form.

177. Write (3+2i)(3-2i) in rectangular form.

 $\approx 178$ . Which of the following is equal to  $i^i$ ?

(A) 
$$\frac{i}{\sqrt{2}}$$
 (B)  $\ln(2) + i$  (C)  $\frac{1}{\sqrt{e^{\pi}}}$  (D)  $e^{\sqrt{3}}$  (E)  $2\pi i$  (F)  $\frac{\ln(\pi)}{2}$ 

179. Which of the following shows all complex numbers for which |z| = 1?



180. Which of the images from #179 shows all complex numbers with  $\arg(z) = 1$ ?

181. Which of the images from #179 shows all complex numbers for which z + i is real (meaning that the imaginary part of z + i is zero)?

 $\approx 182$ . Which of the following shows all complex numbers for which  $\frac{1}{1+z^2}$  is real?



The **conjugate** of the complex number z, written as  $\overline{z}$  and spoken as "Z bar", is the reflection of z over the real-axis. In formulas,

$$\overline{a+bi} = a-bi$$
 and  $\overline{re^{\theta i}} = re^{-\theta i}$ 

if  $a, b, r, \theta$  are real numbers.

183. Given that  $\overline{z} = 5 + 2i$  and  $\overline{w} = 3 - 6i$ , calculate  $\overline{w + z}$ .

184. (a) For 
$$z = \frac{\sqrt{7}}{2} + \frac{\sqrt{11}}{3}i$$
, calculate  $z + \overline{z}$ .  
(b) For  $z = 31 + \frac{\sqrt{3 + \pi}}{\log(4) - 12}i$ , calculate  $z + \overline{z}$ .  
(c) For  $z = 9e^{(\pi/8)i}$ , calculate  $z \cdot \overline{z}$ .  
(d) For  $z = \sqrt{26}e^{(8e^3 - \sqrt{5})i}$  calculate  $z \cdot \overline{z}$ .

185. How are |z| and  $|\overline{z}|$  related? How are  $\arg(z)$  and  $\arg(\overline{z})$  related?

- 186. (a) Give an example of a number z for which  $z + \overline{z} = -12$ , or explain why no such z can exist.
  - (b) Give an example of a number z for which  $z \cdot \overline{z} = -12$ , or explain why no such z can exist.

A polynomial in x is a function that can be written in the form

 $\underline{x^{n}} + \underline{x^{n-1}} + \dots + \underline{x^{2}} + \underline{x} + \underline{x},$ 

where each blank—called a **coefficient**—is a real or complex number, possibly including zero. A **real polynomial** is one whose coefficients are real numbers. In general, variables other than x can also be used (when complex numbers are involved, it is common, but *not* required, to use the variable z).

The **degree** of f(x) is the highest power of x that has a non-zero coefficient.

187. Which of the following are polynomials (in any variable)?

- (a)  $8x^2 + 4x + 1$
- (b)  $8z^2 + 4z + 1$
- (c)  $x^{10} + 5x^6 100x$
- (d)  $(x^5 2x + 1)(x + 1)$
- (e)  $(x^5 2x + 1)\sin(x)$
- (f)  $3x^2 + 3x^{1/2} 4$

(g) 
$$x^2 + 2^x$$

188. Which of the following are real polynomials (in any variable)?

(a)  $8x^2 + 4x + 1$ (c)  $z^2 + 1$ (e) (2+i)x + (4-i)(b)  $8z^2 + 4z + 1$ (d)  $z^2 + i$ (f) (z+i)(z-i)

189. For each of the following, give the degree if the expression is a polynomial in x, and otherwise write "not a polynomial".

| (a) | $\frac{5}{2}x^3 - 7x + 8$       | (g)  | 5                           |
|-----|---------------------------------|------|-----------------------------|
| (b) | $9x^{10}$                       | ☆(h) | 0                           |
| (c) | $6x^5 + \frac{1}{3}x + 5x^{-2}$ |      | 8r + 1                      |
| (d) | $3x^2 + \sin(x)$                | (i)  | $\frac{\partial x + 1}{2x}$ |
| (e) | $(x^2 + 2x - 1)^3$              |      | $r^{3} + 7r$                |
| (f) | 5x                              | (j)  | $\frac{x+1x}{2}$            |

The number c is a **zero** (also called a **root**) of the polynomial f(x) if f(c) = 0.

- 190. Find all the zeroes of  $2x^2 + x 15$ .
- 191. A cannonball fired at 400 m/s at an angle of 52° will have an initial vertical velocity of  $400\sin(52^\circ) \approx 315.2$  m/s, and it will have a height of

$$h(t) = \frac{-9.8}{2}t^2 + 315.2t$$

meters after t seconds. How many seconds will it take for the cannonball to reach the ground?

192. Find all the roots of  $x^5 - 6x^4 + 34x^3$ .

193. Given that 4 is one zero of  $z^3 - 4z^2 + 49z - 196$ , find all its roots.