Linear Algebra, Winter 2022
List 7
More complex numbers, intro to polynomials
164. Re-write $\left(r e^{i \theta}\right)^{3}$ in the form __e-i.

$e^{\theta i}=\cos (\theta)+i \sin (\theta)$

165. Re-write $10 e^{(\pi / 4) i}$ in the form \qquad $+$ \qquad
166. Re-write $\left(2 e^{7 i}\right)^{10}$ in the form \qquad $+$ \qquad i.
167. Re-write $-\sqrt{5}+\sqrt{15} i$ in the form \qquad $e-{ }^{i}$.
168. If z is a complex number with $|z|=4$, what is $\left|z^{2}\right|$?
169. If z is a complex number with $\arg (z)=5 \pi / 6$, what is $\arg \left(z^{2}\right)$?
170. If w is a complex number with $\arg (w)=\pi / 10$, what is $\arg \left(w^{446}\right)$?
171. Write $\left(\frac{\sqrt{3}-i}{1+i}\right)^{6}$ in the form $a+b i$.
(Hint: $\sqrt{3}-i=2 e^{(-\pi / 6) i}$ and $\left.1+i=\sqrt{2} e^{(\pi / 4) i}.\right)$
Rectangular form: $a+b i$, or $a+i b$, or $b i+a$, or similar.
Polar form: $r(\cos \theta+i \sin \theta)$, or $r \cos (\theta)+r \sin (\theta) i$, or similar. Requires $r \geq 0$.
Exponential form: $r e^{\theta i}$, or $r e^{i \theta}$.
172. Write the following in rectangular form.
(a) $e^{\frac{\pi}{4} i}$
(b) $2 e^{i \pi / 6}$
(c) $5 e^{-i \pi / 3}$
(d) $-8 e^{\pi i}$
(e) $\sqrt{9}+\sqrt{-9}$
173. For $z=1+i$ and $w=3 e^{(\pi / 4) i}$, calculate the following. For complex values, you may give the answer in rectangular or polar or exponential form (your choice).
(a) $|w|$
(e) $(\bar{w})^{2}$
(i) z / w
(b) $|z w|$
(f) $z w$
(j) w / z
(c) $|z / w|$
(g) $z+w$
(d) $-w$
(h) $z+z^{2}$
174. Which of the points A-E below could be $z+w$?

175. Which of the points A-E above could be $z w$?
176. Write $\left(5 e^{70^{\circ} i}\right)\left(2 e^{-40^{\circ} i}\right)$ in exponential form and polar form and rectangular form.
177. Write $(3+2 i)(3-2 i)$ in rectangular form.
$\dot{*} 178$. Which of the following is equal to i^{i} ?
(A) $\frac{i}{\sqrt{2}}$
(B) $\ln (2)+i$
(C) $\frac{1}{\sqrt{e^{\pi}}}$
(D) $e^{\sqrt{3}}$
(E) $2 \pi i$
(F) $\frac{\ln (\pi)}{2}$
178. Which of the following shows all complex numbers for which $|z|=1$?
(A)

(B)

(C)

(D)

179. Which of the images from \#179 shows all complex numbers with $\arg (z)=1$?
180. Which of the images from \#179 shows all complex numbers for which $z+i$ is real (meaning that the imaginary part of $z+i$ is zero)?
$\boldsymbol{*}$ 182. Which of the following shows all complex numbers for which $\frac{1}{1+z^{2}}$ is real?
(A)

(B)

(C)

(D)

The conjugate of the complex number z, written as \bar{z} and spoken as " Z bar", is the reflection of z over the real-axis. In formulas,

$$
\overline{a+b i}=a-b i \quad \text { and } \quad \overline{r e^{\theta i}}=r e^{-\theta i}
$$

if a, b, r, θ are real numbers.
183. Given that $\bar{z}=5+2 i$ and $\bar{w}=3-6 i$, calculate $\overline{w+z}$.
184. (a) For $z=\frac{\sqrt{7}}{2}+\frac{\sqrt{11}}{3} i$, calculate $z+\bar{z}$.
(b) For $z=31+\frac{\sqrt{3+\pi}}{\log (4)-12} i$, calculate $z+\bar{z}$.
(c) For $z=9 e^{(\pi / 8) i}$, calculate $z \cdot \bar{z}$.
(d) For $z=\sqrt{26} e^{\left(8 e^{3}-\sqrt{5}\right) i}$, calculate $z \cdot \bar{z}$.
185. How are $|z|$ and $|\bar{z}|$ related? How are $\arg (z)$ and $\arg (\bar{z})$ related?
186. (a) Give an example of a number z for which $z+\bar{z}=-12$, or explain why no such z can exist.
(b) Give an example of a number z for which $z \cdot \bar{z}=-12$, or explain why no such z can exist.

A polynomial in \boldsymbol{x} is a function that can be written in the form

$$
^{x^{n}}+^{x^{n-1}+\cdots+\ldots x^{2}+_x+, ~}
$$

where each blank - called a coefficient - is a real or complex number, possibly including zero. A real polynomial is one whose coefficients are real numbers. In general, variables other than x can also be used (when complex numbers are involved, it is common, but not required, to use the variable z).

The degree of $f(x)$ is the highest power of x that has a non-zero coefficient.
187. Which of the following are polynomials (in any variable)?
(a) $8 x^{2}+4 x+1$
(b) $8 z^{2}+4 z+1$
(c) $x^{10}+5 x^{6}-100 x$
(d) $\left(x^{5}-2 x+1\right)(x+1)$
(e) $\left(x^{5}-2 x+1\right) \sin (x)$
(f) $3 x^{2}+3 x^{1 / 2}-4$
(g) $x^{2}+2^{x}$
188. Which of the following are real polynomials (in any variable)?
(a) $8 x^{2}+4 x+1$
(c) $z^{2}+1$
(e) $(2+i) x+(4-i)$
(b) $8 z^{2}+4 z+1$
(d) $z^{2}+i$
(f) $(z+i)(z-i)$
189. For each of the following, give the degree if the expression is a polynomial in x, and otherwise write "not a polynomial".
(a) $\frac{5}{2} x^{3}-7 x+8$
(g) 5
(b) $9 x^{10}$
(c) $6 x^{5}+\frac{1}{3} x+5 x^{-2}$
A (h) 0
(d) $3 x^{2}+\sin (x)$
(i) $\frac{8 x+1}{2 x}$
(e) $\left(x^{2}+2 x-1\right)^{3}$
(f) $5 x$
(j) $\frac{x^{3}+7 x}{2}$

The number c is a zero (also called a root) of the polynomial $f(x)$ if $f(c)=0$.
190. Find all the zeroes of $2 x^{2}+x-15$.
191. A cannonball fired at $400 \mathrm{~m} / \mathrm{s}$ at an angle of 52° will have an initial vertical velocity of $400 \sin \left(52^{\circ}\right) \approx 315.2 \mathrm{~m} / \mathrm{s}$, and it will have a height of

$$
h(t)=\frac{-9.8}{2} t^{2}+315.2 t
$$

meters after t seconds. How many seconds will it take for the cannonball to reach the ground?
192. Find all the roots of $x^{5}-6 x^{4}+34 x^{3}$.
193. Given that 4 is one zero of $z^{3}-4 z^{2}+49 z-196$, find all its roots.

